Можно ли разрезать шар на несколько частей так, чтобы собрать из них два шара, равных исходному? Здравый смысл подсказывает, что нет. Однако в 1924 году Стефан Банах и Альфред Тарский математически доказали, что шар можно удвоить, просто разрезав его на восемь частей и затем перераспределив их. В данном выпуске мы рассмотрим эту и другие удивительные проблемы и постараемся ответить на вопросы, возникающие при измерении объема, длины или площади. Один из них - что представляют собой объекты, у которых больше двух, но меньше трех измерений?
В сборнике представлены: 36 типовых экзаменационных вариантов, составленных в соответствии с проектом демоверсии КИМ ЕГЭ 2015 года, инструкция по выполнению экзаменационной работы, ответы ко всем заданиям, решения и критерии оценивания заданий 15-21. Выполнение заданий типовых экзаменационных вариантов предоставляет обучающимся возможность самостоятельно подготовиться к государственной итоговой аттестации, а также объективно оценить уровень своей подготовки. Учителя могут использовать типовые экзаменационные варианты для организации контроля результатов освоения школьниками образовательных программ среднего общего образования и интенсивной подготовки обучающихся к ЕГЭ.
В этом выпуске пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики - часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна. Этот выпуск предлагает совершить математическое путешествие вокруг света и узнать много нового о культурах разных народов.
Десятая книжка из серии «Школьные математические кружки» посвящена задачам о спортивных турнирах и ориентирована в первую очередь на школьников 6-9 классов. В нее вошли разработки шести занятий математического кружка, а также более 50 дополнительных задач разной сложности. Первые три занятия рассчитаны на начинающих школьников, следующие три - на более подготовленных.
В книге изложены отдельные важные теоретические вопросы, подкрепленные большим количеством разобранных конкурсных задач. Особое внимание авторы уделяют логике решений, подробно обсуждают типичные ошибки поступающих.
Может ли математика развиваться без математиков, ведь уже сегодня часть их работы взяли на себя компьютеры? Конечно, нет. Во-первых, развитие науки по-прежнему невозможно без человеческого творчества, а во-вторых, в математике очень важно сотрудничество. Автор этого выпуска постарался представить читателю математическое сообщество изнутри и рассказать о международных конгрессах, на которых ученые знакомятся друг с другом, делятся опытом, обсуждают важные проблемы и стараются найти пути их решения. История математических конгрессов - наглядная иллюстрация того, насколько огромную роль в развитии науки играет совместная работа.
Измерения играют важнейшую роль в современной науке, но без них немыслима и повседневная жизнь. Например, без измерений невозможно узнать, что находится рядом с нами, а что - вдали. Если мы составим список всех измерений, которые проводим в течение дня, то удивимся тому, каким длинным он будет. За свою историю человечество выработало различные методы измерений. С их помощью мы смогли определить размеры нашей планеты, протяженность межзвездного пространства и даже измерить время. В этом выпуске пойдет речь о математических методах, на которых строятся астрономические, геодезические, календарные и метрологические измерения.
Простые числа дразнят воображение начинающего математика: ведь даже ребенку можно объяснить, что такое простое число, но в то же время есть ряд несложных на вид задач, над которыми лучшие умы человечества ломают головы на протяжении нескольких тысячелетий. Во второе английское издание книги «Простые числа» авторы Ричард Крэндалл и Карл Померанc включили актуальный материал из теоретической, вычислительной и алгоритмической областей.
Из этого выпуска читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
В этом выпуске речь пойдет о топологии - разделе математики, который исследует явление непрерывности. Топологи изучают фигуры, которые можно деформировать и скручивать. Наверное, именно поэтому их в шутку называют «математиками, не способными отличить бублик от кофейной чашки». Топология - интересная и очень абстрактная дисциплина: в ней нет формул, уравнений, функций и даже чисел и букв! Но она близка к пространственной геометрии: оба эти раздела изучают формы. На страницах этого выпуска вы совершите небольшой экскурс в мир геометрии и топологии, а также узнаете много нового и неожиданного о форме нашей Вселенной.
В 1881 году французский ученый Анри Пуанкаре писал: «Математика - всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых - математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.
Современному человеку трудно представить себе мир без часов: для нас, людей XXI века, это не просто прибор — это наш неизменный спутник на протяжении всей жизни. Именно часы фиксируют время нашего рождения, отмеряют период работы и отдыха, помогают координировать все важные события. Часы бережно хранят наше время — бесспорно, одну из главных ценностей нашего бытия. Потому мы ценим их так же высоко, как и само время, стараясь выбирать самые надежные и качественные модели. Выпуск посвящен истории развития часов и часовых механизмов от древнейших солнечных до современных атомных.
Книга представляет собой сборник задач повышенной трудности по элементарной математике, снабженных указаниями и решениями. В книге собраны задачи, предлагавшиеся на приемных экзаменах поступавшим в Московский физико-технический институт.
Если вы хотите понять ключевые различия между степенью и логарифмом или разобраться, почему существует несколько уровней бесконечности, то эта книга к вашим услугам. Она для тех, кто считает, что математика еще со школы вводит их мозг в состояние ступора. Необычно иллюстрированная, эта книга содержит биографии величайших мыслителей истории, посвятивших себя покорению вершин математики. Выберите удобный для вас темп чтения и откройте для себя математику, которая может быть поистине завораживающей и в то же время простой для понимания наукой.
Новый том серии «Мир математики» посвящен парадоксальной науке - комбинаторике. С одной стороны, она явно свидетельствует: для того чтобы прийти к неожиданным заключениям, достаточно лишь умения считать и рисовать. С другой стороны, комбинаторика не ограничивается простым счетом: она затрагивает сложнейшие области математики. На первый взгляд комбинаторные задачи кажутся элементарными - их поймут даже дети, - однако на деле часто оказывается, что их невозможно решить. Но как бы то ни было, комбинаторика помогает нам лучше понять реальность. Это, безусловно, подтвердит гениальный математик Пал Эрдёш, который разделил историю комбинаторики на «до» и «после». Именно он станет нашим проводником в этот удивительный мир.
Индивидуальная тетрадь на печатной основе. Пособие для дошкольника. Программа "Адаптация ребенка к условиям школьной жизни". Издание для подготовки к школе детей 5-7 лет.
В самом деле, математика, представленная в настоящей книге - это математика, не имеющая аналогов в современной школьной дидактике а также среди тех математических пособий и учебников, на которые опирается в преподавании начальной школьной математики вся современная школа. Поэтому воистину это "математика, которой никогда не было".
Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.
В новом, дополненном, издании учебника изложены все основные разделы дискретной математики и описаны важнейшие алгоритмы на дискретных структурах данных. Основу книги составляет материал лекционного курса, который автор читает в Санкт-Петербургском государственном политехническом университете последние двадцать семь лет. Книга имеет обширный справочный аппарат: указатель обозначений, детальный предметный указатель с переводом всех терминов на английский язык, развернутый библиографический список и комментарии к нему. Содержание учебника полностью соответствует новому Федеральному государственному образовательному стандарту высшего профессионального образования.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки - вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть удивительно простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.